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Language models (LMs), used as building blocks within larger programs, are transforming the way we build AI
systems. Despite overwhelming investment into “aligning” LMs as standalone generalist systems, user-facing
LMs consistently fabricate statements and make fundamental reasoning errors, while imposing enormous costs.
My work establishes foundation model programming, an alternative paradigm for building reliable and scalable
AI systems. In it, we build multi-step programs that leverage retrieval models and LMs as modules, which we
assign well-scoped but fuzzy computations like retrieval, decomposition, synthesis, and scoring. We can then
compile these programs, i.e. automatically translate them into optimized strategies for prompting or finetuning
LMs, to maximize system-level quality and minimize cost. In this way and toward it, my research has advanced
the state of the art for document retrieval, question answering, fact checking, informative dialogue, and other
knowledge-intensive Natural Language Processing (NLP) tasks.

I introduced late interaction, a popular paradigm for information retrieval (IR) that scales up LM token-level
attention to entire document collections (ColBERT; ColBERTv2) and built state-of-the-art neural retrieval
algorithms and systems that search millions of documents in milliseconds (PLAID; DeepImpact). Leveraging
these, I designed reliable retrieval-augmented LM architectures (Baleen; Hindsight), which search massive
collections to craft knowledgeable responses, and created new approaches for supervising retrievers and LMs
(ColBERT-QA; UDAPDR) without human labels. I then proposed several new design patterns and programming
abstractions (Demonstrate–Search–Predict) for building even more powerful LM programs, ones that resemble
deep neural network architectures but rely on passing text (instead of tensors) between models (instead of individual
neural layers). I then developed the first NLP compiler (DSPy) with automatic supervision and optimization
strategies for LM programs. Instead of brittle “prompt engineering” or hand-crafted finetuning jobs, this compiler
automates strategies for translating high-level LM programs into optimized chains of prompts (or LM weight
updates) that maximize system-level objectives for any given LM.

My work spans several layers of the ML, NLP, and IR systems stacks: from efficient systems and algorithms to
effective model architectures, supervision strategies, and programming abstractions. I prioritize building scalable
systems that can unlock next-generation waves of ML applications. I regularly consolidate many core aspects
of my research papers into two influential open-source systems: the ColBERT retrieval system (colbert.ai) and
the DSPy programming framework (dspy.ai). Attracting hundreds of thousands of downloads and visitors per
month, these platforms provide immediate feedback on my new research and a constant stream of cutting-edge
ML problems from my users. My work forms the basis of research and applications at Google, Meta, Amazon,
IBM, VMware, Baidu, Huawei, AliExpress, Vespa (formerly at Yahoo), Hebbia, Pointable, and You.com, to name
a few in industry and is used by many academic teams at Stanford, Berkeley, CMU, MIT, Waterloo, UMD, Johns
Hopkins, Cambridge, Glasgow, Amsterdam, and Tsinghua, among others.

1 Scaling up Expressive Neural Retrieval

LM programs require access to attributed and up-to-date information. I started my Ph.D. by developing the
ColBERT [2] neural retrieval model, which introduced a new paradigm for Transformer-based retrieval called
late interaction with previously unmatched quality and efficiency. If cost was not a concern, we might search
millions of documents using an LM that jointly reads the query and each document together to measure relevance.
This is known to be highly effective, as joint attention can model complex patterns (or interactions) between
keywords in the query and document. However, this approach is extremely expensive, as the Transformer layers
have to re-encode all documents for each new query. Because of that, most retrievers are single-vector models:
they independently collapse each document (or query) into a single high-dimensional vector, and then measure
relevance using just one dot product. This is highly scalable; it can search massive document collections in
milliseconds. Unfortunately, it also creates a substantial bottleneck that limits these models’ ability to learn
complex interactions. My late interaction paradigm seeks to resolve this tension: it proposes effective and
massively scalable methods to permit attention-like interactions between queries and documents. ColBERT
independently encodes each document (or query) as a token-level bag of vectors and then estimates relevance with
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“MaxSim” operators, a sum of maximum-similarity scores. These operators act as a fast form of attention between
two bags of vectors, and manage to preserve the retrieval precision of BERT rankers based on cross-attention,
while being orders-of-magnitude cheaper as late interaction permits encoding all documents offline.

ColBERT established a new Pareto frontier in quality and cost: it can scale sub-linearly, searching millions
of documents in milliseconds, by being pruning-friendly. ColBERT leverages the mathematical properties of
MaxSim to quickly skip more than 99.9% of the (low-scoring) documents when retrieving the top-k results.
Essentially, it can decompose late interaction into dozens of small nearest-neighbor searches at the token level,
fetching and scoring only documents in which at least one token is close to (at least one token in) the query.
Otherwise, we can prove the total score will be too small, and we can skip it. These massive cost reductions
enabled ColBERT to raise the retrieval recall dramatically, e.g. to 97% by ColBERT instead of 81% by the
BM25 system re-ranked by BERT models. A few months after I conducted this work, Meta released their popular
single-vector DPR [25] retriever. In ColBERT-QA [6], I compared the two: I found that a zero-shot ColBERT
retriever can outperform specialized DPR retrievers trained on tens of thousands of in-domain queries for the test
domain. When both are trained similarly, ColBERT can outperform DPR by up to 19 points in answer recall.

I designed ColBERTv2 [14], which further improves the quality of ColBERT embeddings and introduces a
powerful residual compression technique. Based on a new hypothesis of why ColBERT embeddings work well,
this technique cuts ColBERT’s index size by an order of magnitude, consuming as little as 20 bytes per vector. On
23 of 29 test tasks, ColBERTv2 achieved the highest quality of any standalone retriever, outperforming the next
best retriever by up to 8%, while using its compressed representations. I later designed PLAID [13], a retrieval
engine that leverage these residual representations to speed up late interaction dramatically. PLAID can search
140,000,000 passages in around 100 milliseconds. In July 2023, I was invited to give a keynote at the SIGIR
ReNeuIR workshop. In my keynote, I highlighted how these IR–NLP–Systems efforts helped overcome the
“hardware lottery” [23], in which superior but unconventional ML architectures are overlooked due to efficiency
concerns. Throughout 2023, we have hosted a public ColBERTv2 index of Wikipedia, in which PLAID has served
millions of queries toward papers by multiple teams on retrieval-augmented LMs. Further out on the efficiency
side, late interaction has created cross-disciplinary work even beyond CS, including ongoing collaborations with
Stanford electrical engineers and neuroscientists on hardware chip design for retrieval.

With 1500 citations in a short time for my ColBERT line of work, which includes also ColBERTer [1],
UDAPDR [12], and other systems, it has left considerable impact on IR and NLP, in academia and indus-
try. Dozens of teams have built new models and products atop ColBERT models [18; 21; 29; 30; 22] or extending
them [44; 37; 40; 35; 27]. Tens of studies have shown that late interaction surpasses the quality of single-vector
models in out-of-domain retrieval settings [39; 33; 42], challenging domains like math and literature [43; 38; 31],
cross-language retrieval [28; 34; 19], and even multi-modal retrieval and visual question answering [41; 32].
Papers building on ColBERT by several teams have become highly influential: work analyzing [20] and extend-
ing [26] ColBERT has received best paper awards at top venues, and work applying late interaction in Computer
Vision [41] has received over 450 citations. A recent paper [16] from TU Wien found that ColBERT was particu-
larly data efficient: with 1000 training queries, ColBERT not only outperforms expensive cross-encoders but also
matches single-vector DPR models trained with 50× more queries! Another recent paper found that ColBERT
trained for Japanese [19] can match or outperform single-vector models trained on about 100× more data.

2 Building Reliable LM Systems via Retrieval

Language models struggle with recalling long-tail facts and often hallucinate statements or make up citations.
Their knowledge is also hard to update or specialize. To deal with this, I built several early retrieval-based LM
systems [4], which decouple the LM’s capacity for processing text from how it stores knowledge. This boosts
reliability and trust: when these systems produce responses, we can read the sources they cite and judge their
relevance and credibility [3] and, since they store knowledge as text, their LMs can be small and cheap [5] and
their knowledge can be efficiently updated or expanded. A key challenge is how to train the system’s intermediate
stages, for which we typically lack human labels. I developed ColBERT-QA [6], a question answering (QA)
system that introduces relevance-guided supervision (RGS), an iterative strategy for training retrievers without
retrieval labels. RGS takes a noisy heuristic from a downstream task like QA (e.g., “does a retrieved passage
contain the right answer?”) and proceeds in several rounds, training the retriever to assign higher scores to the
most retrievable documents that pass the heuristic. This simple approach, later generalized in several projects,
proved more scalable and more expressive than existing alternatives: I showed that applying RGS to ColBERT,
yielding ColBERT-QA, increases answer recall significantly, without any retrieval labels, and produces a QA
system whose answer accuracy exceeds other systems by up to 12 points. This materialized against much larger
LMs: on the NaturalQuestions benchmark, ColBERT-QA achieves 48% EM, whereas fine-tuned T5-11B [36]
(24x larger) and few-shot GPT-3 [17] (400x larger) score 35% and 30%, respectively.
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Focusing next on more complex reasoning tasks, I developed Baleen [5]. While a two-step retrieve-then-
generate pipeline (nowadays referred to as “RAG”) may answer simple questions, it fails when there are complex
dependencies between facts. To deal with complex questions, the literature suggests applying multiple “hops” of
search to gather information iteratively. However, doing so naively may drown the search system in an exponential
space of potential search paths. I introduced condensed retrieval, a paradigm for conducting multiple retrieval
hops in which the system reads tens of retrieved documents and summarizes them in each hop to inform its
search trajectory. This new architecture achieved high scalability, by nature of maintaining one path via iterative
summarization, and achieved exceedingly high recall, by reading many documents over several hops. However,
supervising Baleen was challenging, as we do not know the order in which information dependencies should be
resolved. I tackled this with a novel latent hop ordering (LHO) algorithm, which generalizes the ideas behind
ColBERT-QA’s RGS to multiple retrieval hops. Baleen advanced quality on HoVer [24], a challenging claim
verification benchmark, from the official baseline’s 15% score directly to 57%, approaching human-level quality.
Overall, I have demonstrated through several state-of-the-art LM systems, including ColBERT-QA, Baleen, and
later Hindsight [10], that leveraging language models as composable modules, not end-to-end systems, and
creating new supervision strategies to train them in multi-stage architectures are both essential for building more
reliable and efficient user-facing systems. My work in this space has led to significant applications at VMware,
IBM, Hebbia, Virtusa, and others, some of which are among the earliest retrieval-based LM production systems.

3 Foundation Model Programming

Recent improvements for LMs have fueled an exploding space of “prompting” techniques, in which LMs can
be programmed with little data using natural language instructions. To build multi-stage architectures in this
regime, I created the Demonstrate–Search–Predict (DSP; [7]) abstractions, expressing a large space of new
AI systems as text-exchange strategies between a frozen LM and a retriever. I introduced general primitives to
annotate few-shot examples for any such strategy (Demonstrate), gather relevant knowledge from multiple sources
(Search), and generate grounded predictions (Predict). I expressed new strategies with these primitives as DSP
programs for a few tasks, showing they outperform GPT-3.5 and LM pipelines and agents by up to 120% and 40%,
respectively. Interest in multi-stage LM pipelines has since grown dramatically. Existing work implements these
with hard-coded ‘prompt templates’, i.e. long hand-crafted strings. This approach can be brittle and unscalable: a
prompt might not generalize to different pipelines, LMs, or even inputs.

I created the DSPy programming model [8], which introduces declarative modules, akin to neural network
layers, to abstract text transformations that are otherwise conducted by manual prompting or finetuning of LMs.
Each DSPy module is parameterized so it can learn to conduct its behavior, to maximize a system-level objective.
To leverage this, I developed the DSPy compiler, which takes any high-level DSPy program and produces an
optimized chain of prompts (or LM finetuned weights). Given a metric and some training inputs, the DSPy
compiler repeatedly simulates the program to bootstrap example traces of each module, using them for self-
improvement, i.e. to construct effective few-shot prompts, create high-quality instructions, or finetune small LMs
for the pipeline steps. Without hand-crafted prompts and within minutes of compiling, a few lines of DSPy allow
LMs like GPT-3.5 and Llama2-13b to self-bootstrap pipelines that outperform standard few-shot prompting
(generally by over 25% and 65%, respectively) and pipelines with expert-created demonstrations (by up to 5–46%
and 16–40%, respectively). On top of that, DSPy programs compiled to open and small LMs like Llama2-13b
and T5-770M are competitive with approaches that rely on expert-written prompts for large proprietary LMs.

Even though DSPy is only a year old, it has a large and fast-growing user base, including in industry at Amazon,
VMware, Microsoft, Replit, Google, Databricks, Pointable, JetBlue, Walmart, and You.com as well as in research
groups at Stanford University (several teams), UC Berkeley, CMU, MIT, University of Waterloo, UMD, and many
others. At the time of writing, the DSPy GitHub repository has nearly 14,000 stars and 1,100 forks, is visited by
tens of thousands of unique users per month, and has nearly 180 open-source contributors. DSPy has been used by
multiple teams to build best-in-class LM systems, including for biomedical information extraction, document
retrieval, and drafting long articles with citations. This work has resonated deeply in industry and beyond: I have
been invited to present this work at Apple, Google, Google X, Meta, Databricks, Oracle Labs, UC Berkeley, and
SIGIR REML, among a dozen other venues. I have also been able to receive approximately $300,000 in grant
funding for DSPy work from Oracle Labs, IBM Research AI, and HAI–Azure Cloud Credit Program.

4 Future Research

The paradigm of foundation model programming is just starting to transform AI systems. I often compare
LM programs to the historical development of deep neural networks (DNNs). Both LM programs and DNNs
compose modular “layers”—i.e., calls to LM modules and DNN operations—into larger architectures, ones that
can be optimized in different ways toward objectives. This analogy spawns many interesting research questions

3



and applications. I plan to study these questions while continuing to build scalable NLP systems that spark
next-generation waves of applications across NLP, IR, and ML Systems. Naturally, much of my work will leverage
the active community around ColBERT and DSPy, but I plan to broaden my explorations into the following:

Universal LM Programs. While the DNN literature explored numerous task-specific architectures up to the
2010s, the ML community eventually converged on a few universal architectures (e.g., Transformers) and task-
independent pretraining recipes (e.g., with language modeling objectives). How would this look for LM programs?
I expect such a “universal” LM program will contain a large number of recursive structures, subsuming several
redundant components for retrieval, grounded generation, classical planning, routing between experts, and the
creation and caching of “skills” or demonstrations. This direction shares commonalities with language agents and
with finetuning LMs to use tools. Unlike them, however, univeral LM programs will place emphasis on finding
the right multi-stage architecture, with appropriate inductive biases, and will be optimized automatically (through
bootstrapping optimizers, like the DSPy compiler) directly toward multiple high-level objectives.

LM Program Optimizers. We can model the optimization process of a DSPy program as a reinforcement
learning (RL) or a graph search problem, where an agent can act to tune select a module, to tune its instructions,
bootstrap new examples for it, and/or finetune its LM weights. How can we train such RL agents to perform
general LM program optimization? Toward this vision, I have mentored two projects with forthcoming releases
on optimizing the instructions of prompts in DSPy and on integrating DSPy assertions, a general construct that
facilitates automatic self-reflection and backtracking logic to enforce constraints on programs.

Richer Retrieval Models. Combining insights from DSPy and Baleen into ColBERT, future retrieval models will
themselves be LM programs, thereby serving as instructable foundation models for retrieval. They will invoke
an LM to generate candidate search queries, read the retrieve documents, and plan or refine its search trajectory
accordingly. How can we make this efficient and scalable? How do we supervise this kind of approach so it
reaches its potential? Toward this long-term vision, I have mentored two advanced-stage projects on building
rerankers in DSPy and developing the next ColBERTv2.5 model.

Better Benchmarking Paradigms. NLP brenchmarks have not kept up with the progress in the field, in part
due to poor incentives. Indeed, it appears easier now to build a system for a new task than to evaluate one. I
have co-led five benchmarking efforts (including LoTTE [14], HELM’s IR evals, and [15]) during my Ph.D., and
gleaned several key lessons from them. Leveraging these, I plan to invest substantial research into benchmarks
that (1) derive test queries from natural user interactions, (2) disentangle head topics vs. the long tail, (3) expose
“zero-shot” challenges, in which no training or validation data is supplied, but nonetheless (4) feature a separate
distribution for validation as in [14], to simultaneously facilitate active development and disincentivize overfitting.
In such benchmarks, metrics must account for balancing the cost and quality dimensions as in [15]. Moving past
classical text-generation metrics in NLP, automatic metrics should themselves consistent of LM programs for
evaluation. To be able to trust these metrics, benchmarks must establish processes by which every evaluation
effort (e.g., a paper reporting new scores) will report confidence intervals and contribute new data back into the
metrics by collecting a small set of human comparisons, as in [11].
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